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Abstract

A ‘‘structure-preserving equivalence’’ in the sense intended here is a mapping between the stiffness, damping and mass

matrices describing some initial second-order system and the corresponding three matrices of another second-order system

having identical spectrum. Most second-order systems can be ‘‘diagonalised’’ through a mapping of this sort. The mapping

provides a new approach to the evaluation and the understanding of eigenvalue and eigenvector derivatives. In place of

pairs of eigenvalues, we think of real scalar stiffness, damping and mass quantities representing decoupled single-degree-of-

freedom systems. In place of pairs of eigenvectors, we think of individual columns of the matrices involved in the

mapping.

This approach resolves the completely artificial phenomenon that the eigenvalue and eigenvector derivatives become

‘‘undefined’’ at instants when modification of, say, a damping parameter causes a pair of complex eigenvalues to turn into

a pair of real eigenvalues or vice-versa. It also has the advantage of being applicable to cases where any one or more of the

system matrices are singular.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction and conventional equivalences

We consider systems whose equation of motion takes the form

M
d2q

dt2
þD

dq

dt
þ Kq ¼ f (1)

In this, {K, D,M} are the system stiffness, damping and mass matrices, f is a vector of (generalised) forces, and
q is a vector of generalised displacements. Both vectors are functions of time, t, and the system has N degrees
of freedom if q and f each contain N entries.
ee front matter r 2009 Elsevier Ltd. All rights reserved.

v.2009.01.032

ing author.

esses: eaxla@nottingham.ac.uk (L.A. Abuazoum), seamus.garvey@nottingham.ac.uk (S.D. Garvey).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2009.01.032
mailto:eaxla@nottingham.ac.uk
mailto:seamus.garvey@nottingham.ac.uk


ARTICLE IN PRESS

Nomenclature

di the ith diagonal element of DD

D the damping matrix (a function of s)
D0, D1 coefficients of the zeroth and first terms

of the Taylor expansion for D(s)
ei column i of the (N�N) identity matrix
gRi; gLi vectors used in the determination of

eigenvector derivatives
ki the ith diagonal element of KD

K the stiffness matrix (a function of s)
K0, K1 coefficients of the zeroth and first terms

of the Taylor expansion for K(s)
mi the ith diagonal element of MD

M the stiffness matrix (a function of s)

M0, M1 coefficients of the zeroth and first terms
of the Taylor expansion for M(s)

QLi, QRi arbitrary orthogonal matrices (House-
holder reflections)

Si all columns of the (N�N) identity
matrix except column i

fwRi; xRi; yRi; zRig the ith columns of matrices of
right diagonalising transformation

fwLi;xLi; yLi; zLig the ith columns of matrices of
left diagonalising transformation

aL; aR; bL;bR scalars used in the determination of
eigenvector derivatives

li the ith eigenvalue
s the independent scalar parameter
fLi, fRi the left and right ith eigenvectors
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It is well known that the spectrum of some original system, {KO, DO, MO}, is identical to the spectrum of
some new system {KN, DN, MN} if there are some invertible matrices, {TL, TR} such that

TT
LKOTR ¼ KN (2)

TT
LDOTR ¼ DN (3)

TT
LMOTR ¼MN (4)

We refer to such a relationship between two systems as a conventional equivalence. It is also well known
that given any arbitrary system {KO, DO, MO}, it is not usually possible to find invertible matrices, {TL, TR}
such that {KN, DN, MN} are all diagonal. Caughey and O’Kelly [1] expressed one necessary and sufficient
criterion as

KOM
�1
O DO ¼ DOM

�1
O KO (5)

provided that the mass matrix, MO, is invertible. In fact, the relationship can be written in alternative ways
using the inverse of KO or the inverse of DO, if either of those is invertible. Obviously, where D0 ¼ 0, Eq. (5) is
satisfied. This paper is concerned with how certain properties of the system {K, D, M} evolve as the system
itself changes. We will consider that the system is a function of one scalar parameter, s, according to

KðsÞ ¼ K0 þ sK1 þ � � �higher order terms (6)

DðsÞ ¼ D0 þ sD1 þ � � � higher order terms (7)

MðsÞ ¼M0 þ sM1 þ � � � higher order terms (8)

Even if systems {K0, D0, M0} and {K1, D1, M1} each obey Eq. (5) and if the higher order terms of Eqs. (6)–(8)
can be neglected, {K(s), D(s), M(s)} will not generally satisfy Eq. (5). Note that when we take derivatives with
respect to s, these will always be of interest only at s ¼ 0 and thus we will have _K ¼ K1; _D ¼ D1 and _M ¼M1

as well as K ¼ K0; D ¼ D0 and M ¼M0 for the instant s ¼ 0. In this paper, the dot notation always
represents the derivative with respect to the scalar parameter, s.

Although the primary purpose of the paper relates to damped systems, we nevertheless devote Section 2 of
the paper to outlining existing methods for the derivatives of eigenvalues and eigenvectors of undamped
systems. This section takes a slightly more general view than other papers have done for the undamped case.
Instead of being concerned directly with the eigenvalues of a system, it focuses on a description of the
eigenvalue problem in terms of homogeneous coordinates. In place of the concept of matrices of left and right
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eigenvectors, we concentrate on transformation matrices {TL, TR} which diagonalise the system according to
Eqs. (2) and (4). Section 2.1 shows very concisely how (in effect) eigenvalue derivatives may be obtained.
Instead of referring to the eigenvalues directly, however, we discuss the diagonalised system. Section 2.2 shows
concisely how the equivalent of eigenvector derivatives may be obtained. Instead of referring to the
eigenvectors explicitly, we discuss instead the diagonalising transformation. This generalised view of the
eigenvalues and eigenvectors of undamped systems—together with their derivatives—equips the reader very
well to understand the methods subsequently proposed for general damped systems.

In Section 3 of this paper, the structure-preserving equivalences (SPEs) are described. These transformations
are more general than the conventional equivalences of Eqs. (2)–(4) and they allow for most systems to be
diagonalised. They were first exposed in Refs. [2,3]—but they were referred to as structure-preserving

transformations in these papers. Each SPE is characterised by one (2N� 2N) matrix, TL, acting on the left
hand side and one (2N� 2N) matrix, TR, acting on the right hand side in much the same way that Eqs. (2)–(4)
involve the (N�N) matrices {TL, TR}. If the original system matrices are real, then the transformation
matrices and the diagonalised system matrices are also real. Sections 4 and 5 then present the main results of
the paper. Section 4 extends the logic of Section 2.1 to finding the derivatives of the diagonalised system in the
context of damped systems. Section 5 extends the logic of Section 2.2 to finding the derivatives of the
diagonalising transformation in the context of damped systems.

The subsequent section contains four examples. In the first example, there is a pair of repeated real roots
and the derivatives of the eigenvalues and eigenvectors are undefined. This example is generated by adjusting a
damping parameter such that at one specific value (corresponding to s ¼ 0), higher values result in two
distinct real roots and lower values result in a complex conjugate pair of eigenvalues. In the second example,
the mass matrix is singular at s ¼ 0. The conventional concepts of eigenvalue derivatives encounter difficulty
in such cases as the rate of change of infinity is difficult to comprehend. The third example is a case of an
undamped system having non-symmetric mass and stiffness matrices where some of the eigenvalues of the
system are complex. This example shows that whilst eigenvalue and eigenvector derivatives can still be ‘‘made
to work’’, the approach to these derivatives through the SPEs is far more elegant and involves only real-valued
quantities. The fourth and final example addresses a system of recognisable structure having both singular
mass matrix and a pair of identical real roots.

In this paper, matrices are signified by emboldened uppercase roman characters, vectors are denoted by
emboldened lowercase roman characters, scalars are denoted using italicised lowercase roman characters
where they refer to the diagonal elements of matrices and in other cases they are denoted by italicised Greek
symbols.

Underlined quantities are quantities of ‘‘double-dimension’’. Thus M is a matrix of dimension (2N� 2N)
whereas M is a matrix of size (N�N), wRi is a matrix of dimension (2N� 2) whereas wRi is a column-vector of
size N and ki is a (2� 2) matrix whilst ki is a scalar. Subscripts O and N indicate that the quantities subscripted
belong either to the original or new system after a discrete transformation has taken place. Subscripts L and R

distinguish between left eigenvectors (or left transformation) and right eigenvectors (or right transformation).

2. Eigenvalue and eigenvector derivatives for undamped systems

There is already a substantial literature on eigenvalue and eigenvector derivatives for undamped systems.
Fox and Kapoor [4] provided a method applicable to symmetric undamped systems. These expressions have
been expanded by numerous authors, e.g. Refs. [5–10] to determine eigenvalue and eigenvector derivatives for
more general non-symmetric undamped systems. Nelson [11] simplified the procedure for calculating
eigenvector derivatives of undamped systems so that only the eigenvalue and eigenvector under consideration
are required.

This section provides an approach based on the above existing methods but taking a slightly more general
view of the concept of eigenvalues based on the homogeneous coordinates approach of Ref. [12]. The purpose
of this section is to provide a framework for undamped systems which can be extended naturally to damped
systems. Aside from this purpose, the only added value in this section is that it caters naturally for the case
where the mass matrix may be singular whereas the aforementioned methods do not. We consider non-
symmetric systems in this section and it is possible that such systems can produce complex eigenvalues and
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associated complex eigenvectors. The treatment of this section can be applied to such cases but there may be
issues of numerical stability in such cases. The intention for the methods of this section is that they would only
ever be applied to the case of real eigenvalues. Where an undamped system has complex eigenvalues, the
natural course is to treat it as we propose that all damped systems should be treated (Sections 4 and 5).

Consider the undamped system whose stiffness matrix is K and whose mass matrix is M. The eigenvalues of
this system represent squares of natural frequencies in rad/s. The following general definitions will be used

ðKmi �MkiÞ/Ri ¼ 0 (9)

/T
LiðKmi �MkiÞ ¼ 0 (10)

where {mi, ki} together represent the eigenvalue l: ¼ (ki/mi) and f/Li;/Rig represent the corresponding left and
right eigenvectors, respectively. For consistency with later sections, we place all emphasis on the pair {mi, ki}
and no emphasis on the eigenvalue itself. In most instances, we could insist that mi ¼ 1. This corresponds to
the familiar ‘‘mass-normalisation’’. However a more generally-applicable constraint is that

k2
i þm2

i ¼ 1 for all i (11)

The definitions of eigenvalues comprised by Eqs. (9) and (10) is referred to as a homogeneous coordinates

definition [12] and the same arbitrary normalisation of each pair {mi, ki} is used there. The normalisation given
by Eq. (11) admits the possibility that either mi ¼ 0 or ki ¼ 0 and it is possible to express {mi, ki}, respectively,
as the cosine and sine of a single scalar angle but there is no particular value in pursuing this expression here.

The following orthogonality relationships are easily proven

/T
LiK/Rj ¼ 0 8 mikjakimj (12)

/T
LiM/Rj ¼ 0 8 mikjakimj (13)

In this section, we will consider that the eigenvalues are all distinct. In the later sections dealing with damped
systems, this condition will be relaxed to the milder condition that no pairs of eigenvalues are repeated.
Collecting the left and right eigenvectors in the same order produces

UL ¼ ½/L1 /L2 . . . /LN � (14)

UR ¼ ½/R1 /R2 . . . /RN � (15)

and both matrices, fUL;URg, will be invertible since the eigenvalues are distinct. Then diagonal matrices,
{KD, MD} are related to the original stiffness and mass matrices {K0, M0} through the conventional
equivalences

KD ¼ UT
LKUR (16)

MD ¼ UT
LMUR (17)

Note that the normalisation of Eq. (11) controls the scaling of ðUT
LKURÞ and ðU

T
LMURÞ. The ith diagonal

entries of {KD, MD} are {ki, mi}, respectively. We see that the eigenvectors define a diagonalising

transformation which maps the original system matrices {K, M} onto the diagonal matrices {KD, MD}.

2.1. Rates of change of the diagonalised system

Differentiate Eqs. (16) and (17) with respect to some scalar parameter, s. The dot notation employed here
and henceforth indicates a derivative with respect to s.

_KD ¼ _U
T

LKUR þUT
L
_KUR þUT

LK
_UR (18)

_MD ¼ _U
T

LMUR þUT
L
_MUR þUT

LM
_UR (19)

The derivatives of each pair, {ki, mi}, must be determined in isolation. Throughout this paper, we use the
notation, ei, to denote the ith column of the (N�N) identity matrix and we will denote by Si the matrix
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containing the remaining (N–1) columns. Pre-multiplying Eqs. (18) and (19) by ei
T and post-multiplying them

by ei yields

_ki ¼
_/

T

LiK/Ri þ /T
Li
_K/Ri þ /T

LiK
_/Ri (20)

_mi ¼
_/

T

LiM/Ri þ /T
Li
_M/Ri þ /T

LiM
_/Ri (21)

Multiplying Eq. (20) by mi, multiplying Eq. (21) by ki and subtracting the latter result from the former gives

mi
_ki � ki _mi ¼ /T

LiðmiK1 � kiM1Þ/Ri (22)

Eqs. (12) and (13) were invoked to cancel terms from Eq. (22) and Eqs. (6) and (8) were also applied to replace
f _K; _Mg by {K1, M1}, respectively. Evidently, Eq. (22) is insufficient to determine f _ki; _mig uniquely. The
normalisation information of Eq. (11) provides the necessary second equation

ki
_ki þmi _mi ¼ 0 (23)

Combining Eqs. (22) and (23) yields

mi �ki

ki mi

" #
_ki

_mi

" #
¼
�

0

� �
(24)

where the diamond symbol, �, is used here (and later) to represent a known scalar quantity. In the
present case, it happens to be ð/T

LiðmiK1 � kiM1Þ/RiÞ. Note that the (2� 2) matrix of Eq. (24) is an orthogonal
matrix.

2.2. Rates of change of the diagonalising transformation

Applying Eqs. (9) and (10) for all of the eigenvectors simultaneously results in

ðKURMD �MURKDÞ ¼ 0 (25)

ðMDUT
LK� KDUT

LMÞ ¼ 0 (26)

Differentiating Eq. (25) with respect to s yields

K _URMD �M _URKD ¼ ðMUR
_KD þM1URKDÞ � ðK1URMD þ KUR

_MDÞ (27)

The quantities on the right hand side of Eq. (27) are known. Note that because {KD, MD} are both diagonal,
column i of the left hand side involves only the eigenvector, /Ri. Thus for the general ith right eigenvector,

ðmiK� kiMÞ _/Ri ¼ ½ðM
_ki þM1kiÞ � ðK1mi þ K _miÞ�/Ri (28)

Similarly, by differentiating Eq. (26) and taking row i we can obtain

_/
T

LiðmiK� kiMÞ ¼ /T
Li½ðM

_ki þM1kiÞ � ðK1mi þ K _miÞ� (29)

Now, ðmiK� kiMÞ has one zero singular value (recall our assumption of no repeated eigenvalues) and hence
solution of Eqs. (28) and (29) is not simply a matter of finding the inverse of this matrix. In fact, these
equations each reveal the fundamental truth that it is only possible to know (N�1) independent facts about the
rate of change of any one eigenvector (either left or right). The reason for the remaining unknown is that even
when the system is not changing, any multiple of /Ri can be added onto /Ri itself without compromising its
legitimacy as a right eigenvector. The same is true for /Li. Nelson [11] showed that by writing the eigenvector
derivative as a linear combination of the eigenvectors, it becomes clear what can be known about the
eigenvector derivative and what cannot. We adopt a more direct (and more efficient) approach here.

Begin by calculating orthogonal matrices, {QLi, QRi} such that

QLi/Li ¼ eiaLi (30)

QRi/Ri ¼ eiaRi (31)
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where faLi; aRig are arbitrary real scalars. Such matrices {QLi, QRi} are easily achieved as Householder
reflections [13] which—in addition to being orthogonal—have the very attractive properties of being
symmetric and low-rank modifications of the identity. Recalling that Si represents the (N�N) identity matrix
from which the ith column has been removed, it is clear that ðST

i QLi/LiÞ ¼ 0 ¼ ðST
i QRi/RiÞ. Now, write the

two desired vector derivatives as

_/Li ¼ ðQ
T
LiSiÞgLi þ bLi/Li (32)

_/Ri ¼ ðQ
T
RiSiÞgRi þ bRi/Ri (33)

The vectors {gLi, gRi} each have (N–1) entries and these can be computed directly from Eqs. (28) and (29),
respectively. The transpose symbols in Eqs. (32) and (33) are not necessary if {QLi, QRi} have been calculated
as Householder reflections but we allow that {QLi, QRi} are not necessarily Householder reflections. Many
other options are also available.

To obtain gRi, substitute for _/Ri in Eq. (28). The term involving the unknown scalar, bRi, vanishes naturally
and the result is a set of N consistent equations in (N–1) unknowns. The most stable solution of these
equations is achieved through use of the left pseudo-inverse. To obtain gLi, substitute for _/Li in Eq. (29).
The term involving the unknown scalar, bLi, vanishes naturally and the result is a set of N consistent
equations in (N–1) unknowns. The most stable solution of these equations is achieved through use of the right
pseudo-inverse.

Having evaluated vectors {gLi, gRi}, it remains only to set values for the unknown scalars fbLi;bRig. The
normalisation of Eq. (11) provides one equation governing these since /T

LiK/Ri ¼ ki and /T
LiM/Ri ¼ mi. Thus

kið
_/

T

LiK/Ri þ /T
LiK1/Ri þ /T

LiK
_/RiÞ þmið

_/
T

LiM/Ri þ /T
LiM1/Ri þ /T

LiM
_/RiÞ ¼ 0 (34)

Substituting for f _/Li; _/Rig using Eqs. (32) and (33) transforms (34) into a linear equation in fbLi;bRig.
Obviously, one linear equation is not sufficient to determine two unknowns and a further arbitrary decision
must be made. For symmetric undamped systems, the left and right eigenvectors can be forced to be identical
and in this case, bLi ¼ bRi. In more general cases, a reasonable strategy is to maintain

/T
Li/Li ¼ /T

Ri/Ri for all i (35)

and this clearly leads to a second linear equation in fbLi; bRig. The problem of determining the eigenvector
derivatives is now solved. Moreover, notice that in order to determine the derivatives of the ith left and right
eigenvectors, it is not necessary to know any other eigenvectors.

3. Structure-preserving equivalences

Garvey et al. [2,3] presented a more general approach to coordinate transformations for second-order
systems (extended to higher order systems in Refs. [14,15]). These more general coordinate transformations
are referred to here as SPEs and they can be understood as left and right transformation matrices which
preserve the structure of Lancaster augmented matrices (LAMs).

Two systems having matrices {KO, DO, MO} and {KN, DN, MN}, respectively, are related by a SPE if for
some (N�N) matrices {WL, XL, YL, ZL} and {WR, XR, YR, ZR}, the following identities hold

WL XL

YL ZL

" #T
0 KO

KO DO

" #
WR XR

YR ZR

" #
¼

0 KN

KN DN

" #
(36)

WL XL

YL ZL

" #T
KO 0

0 �MO

" #
WR XR

YR ZR

" #
¼

KN 0

0 �MN

" #
(37)

WL XL

YL ZL

" #T
�DO �MO

�MO 0

" #
WR XR

YR ZR

" #
¼
�DN �MN

�MN 0

" #
(38)
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and if the inverses of the (2N� 2N) transformation matrices exist. The matrices on the right hand sides of
Eqs. (36)–(38) are the LAMs of the new system {KN, DN, MN} and it is clear that the corresponding LAMs for
the original system {KO, DO, MO} appear on the left hand side. These equations can be written more
compactly as

TT
L MO TR ¼MN (39)

TT
L DO TR ¼ DN (40)

TT
L KO TR ¼ KN (41)

Here the underlining is used to indicate quantities of ‘‘double-dimension’’ i.e. matrices of dimension
(2N� 2N). The notation for the LAMs is chosen deliberately. Note that MO does not appear in MO but KO

and DO do. Similarly DO does not appear in DO but KO and MO do. Finally, note that KO does not appear in
KO but DO and MO. That the two systems {KO, DO, MO} and {KN, DN, MN} have the same spectrum is clear,
since the eigenvalues of the system {KO, DO, MO} are most usually calculated as the roots of

detðDO�lKOÞ ¼ 0 (42)

If these roots are all distinct, then it is always possible to find matrices fUL;URg such that ðUT
L DO URÞ and

ðUT
L KO URÞ are diagonal and in all such cases, it is always possible to find some SPEs for the system such that

{KN, DN, MN} of Eqs. (35)–(37) are all diagonal. An algorithmic approach to determining diagonalising
fTL;TRg from fUL;URg is outlined in Refs. [3,14]. In Ref. [15], a process is described by which the matrices
fTL;TRg are developed from numerical solution of the differential equations outlined in Ref. [16]. A major
motivation for the present paper is that even when it is not possible to find matrices fUL;URg such that
ðUT

L DO URÞ and ðU
T
L KO URÞ are diagonal, it may still be possible to determine diagonalising fTL;TRg. This

happens particularly where there are pairs of repeated real roots.
Define the diagonalising transformation for the general system {K, D, M} as

TT
L MTR ¼MD (43)

TT
L DTR ¼ DD (44)

TT
L KTR ¼ KD (45)

where fKD;DD;MDg represent the LAMs for the system whose coefficient matrices are the diagonal matrices
{KD, DD, MD}. We can now develop a new homogeneous coordinates definition for the eigenvalues and
eigenvectors of a second-order system. We begin this development with the simple observation that

mi

0 ki

ki di

" #
þ di

ki 0

0 �mi

" #
þ ki

�di �mi

�mi 0

" # !
¼

0 0

0 0

� �
(46)

It follows immediately that if {ki, di, mi} are, respectively, the ith diagonal entries of the diagonal matrices are
{KD, DD, MD}, then ðmi MDþdi DDþki KDÞ must have (at least) two zero singular values. It then follows that
if Eqs. (43)–(45) apply and if fTL;TRg are both invertible, then ðmi Mþdi Dþki KÞ must also have (at least)
two zero singular values. Vectors from within the row-kernel of ðmi Mþdi Dþki KÞ form columns i and (N+i)
of TR and from within the column-kernel of ðmi Mþdi Dþki KÞ form columns i and (N+i) of TL.

4. Derivatives of the diagonalised system

The derivatives of the eigenvalues and eigenvectors of damped second-order systems provide additional
challenges but there is obviously strong motivation for studying these. Cardani and Mantegazza [17]
considered damping in context of flutter problems and noted that the eigenvalues, eigenvectors and their
derivatives become complex in general. Adhikari [18] derived exact expressions for the derivatives of complex
eigenvalues and eigenvectors for systems having non-proportional viscous damping—avoiding the use of a
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state space representation of the equation of motion. Friswell and Adhikari [19] developed Nelson’s method
for symmetric non-proportionally damped systems with complex modes and Adhikari and Friswell [20]
developed expressions for the first and second derivatives of complex eigensolutions of general asymmetric
nonconservative systems.

In this section, we concentrate on the derivatives of three diagonal matrices, {KD, DD,MD}. In effect, we are
finding the derivatives of the eigenvalues of the general second-order system but this approach does not suffer
from the eigenvalue derivatives becoming undefined in the presence of a single pair of identical real roots and
it does not have any restriction to non-infinite eigenvalues.

The following serve as a general definition for a pair of eigenvalues of a second-order system and the
associated pairs of left and right eigenvectors.

ðki Kþdi Dþmi MÞwRi ¼ 0 (47)

wLi
T ðki Kþdi Dþmi MÞ ¼ 0 (48)

where fwLi;wRig are each (2N� 2) matrices whose partitions will be denoted as follows

wLi ¼
wLi xLi

yLi zLi

" #
(49)

wRi ¼
wRi xRi

yRi zRi

" #
(50)

These partitions are related to the full matrices of the diagonalising transformation through

WL ¼ ½wL1 wL2 . . . wLN � (51)

WR ¼ ½wR1 wR2 . . . wRN � (52)

XL ¼ ½xL1 xL2 . . . xLN � (53)

XR ¼ ½xR1 xR2 . . . xRN � (54)

YL ¼ ½yL1 yL2 . . . yLN � (55)

YR ¼ ½yR1 wR2 . . . wRN � (56)

ZL ¼ ½zL1 zL2 . . . zLN � (57)

ZR ¼ ½zR1 zR2 . . . zRN � (58)

and the matrices {WL, XL, YL, ZL, WR, XR, YR, ZR} collectively form fTL;TRg as Eqs. (36)–(41) indicate.
Define ei as

ei ¼
ei 0

0 ei

" #
(59)

and it is then evident that

TL ei ¼ wLi (60)

TR ei ¼ wRi (61)

Differentiate Eqs. (43)–(45) to obtain:

_T
T

L MTRþTT
L
_MTRþTT

L M _TR ¼ _MD (62)

_T
T

L DTRþTT
L
_DTRþTT

L D _TR ¼ _DD (63)
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_T
T

L KTRþTT
L
_KTRþTT

L K _TR ¼ _KD (64)

Following a close parallel to the logic used in Section 2.1, for some given i, multiply Eq. (62) by mi, multiply
Eq. (63) by di and multiply Eq. (64) by ki. Adding the three resulting equations and pre- and post-multiplying
by ei

T and ei, respectively, yields

wLi
T ðki

_Kþdi
_Dþmi

_MÞwRi ¼ ðki
_kiþdi

_diþmi _miÞ (65)

where the definitions of fki; di;mig are (obviously)

ki ¼
�di �mi

�mi 0

" #
; di ¼

ki 0

0 �mi

" #
; mi ¼

0 ki

ki di

" #
(66)

In determining (65), Eqs. (47), (48), (60) and (61) were applied. Now, since all quantities on the LHS of (65)
are known along with {ki, di, mi}, it is clear that there are four scalar equations in (65) involving the three
unknowns f _ki; _di; _mig. It is immediately obvious, by symmetry that, at most, only three scalar equations are
independent. In fact, these three resulting equations can be rearranged to have the form:

di �ki 0

mi 0 �ki

0 mi �di

2
64

3
75

_ki

_di

_mi

2
64

3
75 ¼

�

�

�

2
64
3
75 (67)

where, once again, the diamond symbol, �, is being used to indicate a known scalar quantity. The (3� 3)
matrix on the left hand side of (67) always has one zero singular value. The fact that f _ki; _di; _mig are not
uniquely defined is consistent with the finding from the undamped case that the scaling of the diagonal entries
themselves is not unique. We choose to set the scaling

k2
i þ d2

i þm2
i ¼ 1 for all i (68)

Then Eq. (67) becomes

di �ki 0

mi 0 �ki

0 mi �di

ki di mi

2
6664

3
7775

_ki

_di

_mi

2
64

3
75 ¼

�

�

�

0

2
6664
3
7775 (69)

Rather than eliminate any one row from Eq. (67) when forming Eq. (69), it recommended to leave four scalar
equations in Eq. (69) and to solve this using the pseudo-inverse. The columns of the (4� 3) matrix in Eq. (69)
are mutually orthogonal and thus very stable solutions can be found for the three rates of change.

Eigenvalues and their derivatives can be calculated from fmi; di; kig and their derivatives f _mi; _di; _kig using the
equation ki þ dilþmil

2
¼ 0. Then, a pair of eigenvalues is represented by

l ¼ �di �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

i � 4kimi

q� ��
2mi

Differentiating the equation ki þ dilþmil
2
¼ 0 with respect to s gives an expression for the eigenvalue

derivatives _l ¼ �ð _ki þ
_dilþ _mil

2
Þ=ðdi þ 2milÞ.
5. Derivatives of the diagonalising transformation

In this, we follow a close parallel to the development of Section 2.2. We begin with Eqs. (47) and (48) as
definitions of the left and right ‘‘eigenvectors’’—in the sense that they contain the eigenvector information
associated with the pair of eigenvalues which are roots of ðmil

2
þ dilþ kiÞ ¼ 0. As was the case with Section

2.2, we shall see that no other eigenvector information is required to find the required derivatives—f _wLi; _wRig.
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Differentiating Eqs. (47) and (48) produces

ðki Kþdi Dþmi MÞ _wRi ¼ �
d

ds
½ðki Kþdi Dþmi MÞ�wRi (70)

_wLi
T ðki Kþdi Dþmi MÞ ¼ �wLi

T d

ds
½ðki Kþdi Dþmi MÞ� (71)

The right hand sides of the above equations are known. We now follow a procedure almost identical to that of
Section 2.2 where the derivatives of the eigenvectors of an undamped system were derived. First, recall the
definition of ei from Eq. (58). In the same way that {ei, Si} together span N-space, we define new (2N� (2N–2))
matrix, Si, such that fei;Sig together span 2N-space. A logical format for Si is this

Si ¼
Si 0

0 Si

" #
(72)

Let fQLi;QRig represent two orthogonal matrices satisfying

QLi wLi ¼ ei aLi (73)

QRi wRi ¼ ei aRi (74)

where faLi; aRig are any two arbitrary (2� 2) matrices. Then ðST
i QLi wLiÞ ¼ 0 ¼ ðST

i QRi wRiÞ. Now, write the
two desired derivatives, f _wLi; _wRig, as

_wLi ¼ ðQ
T
Li SiÞ gLiþwLi bLi (75)

_wRi ¼ ðQ
T
Ri SiÞ gRiþwRi bRi (76)

where fbLi;bRig are (2� 2) matrices and where fgLi; gRig are matrices of dimension (2(N�1)� 2) which can be
determined uniquely by substituting for f _wLi; _wRig in Eqs. (70) and (71), respectively, using Eqs. (75) and (76).
Terms involving the unknown ((2� 2) matrix) quantities, fbLi;bRig, vanish naturally and the result in each case is
an overdetermined but consistent set of equations which can be solved directly and stably using a pseudo-inverse.

It remains only to state how the two (2� 2) matrices fbLi;bRig should be determined. Much of the requisite
information is present through differentiating the following three equations

wT
Li KwRi ¼ ki (77)

wT
Li DwRi ¼ di (78)

wT
Li MwRi ¼ mi (79)

These equations arise by post-multiplying each of Eqs. (43)–(45) by ei and pre-multiplying each one by its
transpose. The derivatives of the right hand sides of Eqs. (77)–(79) are known (see Section 4) as are the
derivatives of the LAMs. When Eqs. (75) and (76) are used to substitute for f _wLi; _wRig, Eqs. (77)–(79) yield 12
equations in only 8 unknowns (the 8 scalar entries of fbLi;bRig). In fact, only 6 of these equations are
independent. When the system matrices are symmetric, forcing bLi ¼ bRi is always possible and this is
sufficient to determine fbLi;bRig uniquely. When the system matrices are not symmetric, some arbitrary choice
must be made in the determination of these quantities. A reasonable general approach (which is consistent
with the symmetric case) is to impose the constraint:

diagðbT
Li bLiÞ ¼ diagðbT

Ri bRiÞ (80)

6. Examples

Four examples are presented here. For three of the cases, the systems are symmetric and have dimension
(3� 3). In the other case, the system is undamped and non-symmetric with dimension (2� 2). All systems are
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described in terms of the scalar parameter, s, through Eqs. (6)–(8) where {M0, D0, K0} and {M1, D1, K1} are
given explicitly.

6.1. A pair of identical real roots

In this case, there is a pair of identical real roots. Here, the point s ¼ 0 coincides exactly with a point on the
root-locus plot where two repeated real roots are just about to turn into two complex conjugate roots or vice-
versa. Established methods indicate (correctly) that eigenvalue derivatives are undefined in such cases.
However, the coefficients of the corresponding quadratic polynomial vary smoothly and are well-behaved.

K0 ¼

800 �300 0

�300 900 50

0 50 1200

2
64

3
75; M0 ¼

4 �1 0

�1 5 1

0 1 9

2
64

3
75; K1 ¼M1 ¼

0 0 0

0 0 0

0 0 0

2
64

3
75

D0 ¼

26 10 24

10 18 15

24 15 40

2
64

3
75þ srefD1; D1 ¼

2 1 2

1 1 1

2 1 3

2
64

3
75; sref ¼ 13:4120370573992091

The ‘‘eigenvector scaling’’ is selected such that ðm2
i þ d2

i þ k2
i Þ � 1 for all i.

Table 1 summarises the values fmi; di; kig for each of the three pairs of modes as well as f _mi; _di; _kig.
Table 1

The diagonalised system and its rates of change.

Mode pair 1 Mode pair 2 Mode pair 3

mi 4.9413E�3 6.5974E�3 6.7012E�3
di 1.5678E�2 1.9336E�2 1.6263E�1
ki 9.9986E�1 9.9979E�1 9.8666E�1
_mi 6.278E�6 �6.254E�6 �9.165E�6
_di 0.3514E�3 0.6544E�3 0.6149E�2

_ki �5.54E�6 �1.261E�5 �0.1013E�2

0σ =

0σ <

0σ >

Im
ag

in
ar

y 
P

ar
t

1

0.5

0

-0.5

-1

Real part
-13 -12.8 -12.6 -12.4 -12.2 -12 -11.8 -11.6 -11.4

A pair of repeated real roots

Fig. 1. Root locus for one pair of roots.
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Pairs of eigenvalues can be calculated from fmi; di; kig using ki þ dilþmil
2
¼ 0. The following eigenvalues

are found:

l ¼

�1:5862� 14:1363i

�1:4654� 12:2227i

�12:1341� 0i

2
64

3
75

Fig. 1 shows the root locus for the pair of repeated real roots for positive and negative values of s close to
s ¼ 0.

6.2. Singular mass matrix

In this case, the mass matrix, M0, is singular. This is deliberately selected to be a problematic case for the
conventional eigenvalue solutions because one eigenvalue is the point at infinity.

M0 ¼

4 1 �1

1 2 �2

�1 �2 2

2
664

3
775; M1 ¼

3 �1 0

�1 6 0

0 0 5

2
664

3
775,

K0 ¼

800 �300 0

�300 900 50

0 50 1200

2
664

3
775; K1 ¼

29 26 �14

26 29 �24

�14 �24 36

2
664

3
775

D0 ¼

26 10 24

10 18 15

24 15 40

2
664

3
775; D1 ¼

2 1 2

1 1 1

2 1 3

2
664

3
775

The eigenvalues for the system are shown below

l ¼

�1:6401� 11:1827i

�18:5730

�5:4110� 22:0597i

Inf

2
6664

3
7775

Since the mass matrix is singular, Eqs. (36)–(38) cannot be used easily to determine the diagonalised system.
We take two linear combinations of the LAMs.

F ¼ aM0þbD0þcK0

G ¼ d M0þeD0þf K0

where fa; b; c; d; e; f g are selected scalars and G is an invertible matrix. The matrix of eigenvectors, X,
diagonalises all three LAMs in the sense that X T M0 X , X T D0 X and X T K0 X are all diagonal. From this
point, it is straightforward to determine the left and right parts of the structure-preserving diagonalising
equivalence. These are identical and they both are given by

T ¼ 10�3

�28:2204 �21:7725 13:8422 0:5128 �0:0109 �0:0000

�22:4223 19:6328 20:6002 0:2288 0:2550 �0:0000

16:9498 �6:5772 26:0390 0:7345 0:4515 0:0000

�65:5050 5:6367 �257:0914 �29:9025 �21:6542 0:0000

�29:2315 �131:5579 76:4689 �23:1729 16:8731 24:7175

�93:8257 �232:9398 �24:5455 14:5405 �11:4635 24:7175

2
666666664

3
777777775

The diagonalised system and its derivatives are calculated from Eq. (69).
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Table 2

Diagonalised system and its rates of change.

Mode pair 1 Mode pair 2 Mode pair 3

mi 7.8254E�3 1.9378E�3 1.0692E�20

di 2.5669E�2 2.0972E�2 5.3763E�2

ki 9.9964E�1 9.9977E�1 9.9855E�1

_mi 0.4139E�2 0.3712E�2 0.672E�2
_di �0.2159E�2 �0.144E�1 0.1921E�1

_ki 0.2304E�4 0.2949E�3 �0.1034E�2

Table 3

Diagonalised system and its rates of change.

Mode pair 1 Mode pair 2

mi 0.2174 0.2174

di 0.6981 �0.6981

ki 0.6822 0.6822

_mi �0.0055 �0.0055
_di 0.0414 �0.0414

_ki �0.0406 �0.0406
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Table 2 summarises the values of fmi; di; kig for each of the three pairs of modes as well as f _mi; _di; _kig.
The rate of change of the diagonalising transformation _T is computed by substituting Eqs. (75) and (76) into

Eqs. (70) and (71). Terms involving the unknown scalars, fbLi;bRig, vanish naturally because of Eqs. (47) and
(48). The derivatives of the Eqs. (77)–(79) are sufficient to determine fbLi;bRig uniquely. We find

_T ¼ 10�3

6:3979 �6:1790 16:5810 0:3525 0:3174 1:7303

�4:3913 8:4139 �13:8721 0:0949 0:2566 �0:5147

1:4526 22:3316 8:5647 0:2828 0:8830 0:1652

�10:3857 �174:5571 �1:1403 6:2727 �9:9218 11:5605

3:3407 119:5562 6:7647 �4:2423 12:8174 �12:0328

13:4884 �9:4664 227:8947 2:0016 25:4895 20:3615

2
666666664

3
777777775
6.3. Undamped non-symmetric system

This example is an undamped system having non-symmetric (2� 2) mass and stiffness matrices. It is selected
to be an interesting case for conventional eigenvalue solutions because all of the eigenvalues of the system are
complex.

K0 ¼
11 �16

8 �2

� �
; M0 ¼

4 3

�5 3

� �
; K1 ¼

�4 0

�5 4

� �
; M1 ¼

4 0

�1 �4

� �

The eigenvalues comprise two conjugate pairs—one pair being the negative of the other.

l ¼ �ð1:6058� 0:7484iÞ

The decoupled single-degree-of-freedom system fmi; di; kig and their derivatives are calculated.
Table 3 below summarises the values fmi; di; kig for each of the two pairs of eigenvalues as well as f _mi; _di; _kig.
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The right and left parts of the diagonalising transformations fTR;TLg are given by

TR ¼

�0:0481 �0:1409 �0:0601 0:0612

�0:2683 �0:0420 �0:1478 �0:0391

0:1886 �0:1922 0:1449 0:0558

0:4640 0:1226 0:2065 �0:1675

2
666664

3
777775

TL ¼

0:1118 0:1873 0:0149 �0:1240

0:2426 �0:2061 0:1707 0:0444

�0:0468 0:3892 0:0639 �0:2109

�0:5357 �0:1392 �0:3055 �0:0636

2
666664

3
777775

The rates of change of the right and left diagonalising transformations f _TR; _TLg are found to be

_TR ¼

0:0378 0:0268 0:0394 �0:0063

�0:1374 0:0333 �0:0971 �0:0300

�0:1300 0:0264 �0:0723 0:0232

0:2891 0:0901 0:2149 �0:0738

2
666664

3
777775

_TL ¼

�0:0647 �0:0938 �0:0020 0:0518

0:3657 �0:0133 0:1673 �0:0178

0:0080 �0:1758 �0:0622 0:0387

�0:5068 0:0605 �0:2181 �0:0583

2
666664

3
777775
6.4. Physical system

In this example we try to give a practical application of the proposed approach. Fig. 2 shows a system with 3
degrees of freedom whose system matrices are

M0 ¼

ym1 0 0

0 ym2 0

0 0 ym3

2
64

3
75; K0 ¼

yk1 �yk1 0

�yk1 ðyk1 þ yk2Þ �yk2

0 �yk2 ðyk2 þ yk3Þ

2
64

3
75; D0 ¼

yd1 �yd1 0

�yd1 ðyd1 þ yd2Þ �yd2

0 �yd2 ðyd2 þ yd3Þ

2
64

3
75

We will investigate the case where ym1 ¼ 2; ym2 ¼ 1; ym3 ¼ 0, yk1 ¼ 3:0E4; yk2 ¼ 2:0E4; yk3 ¼ 1:0E4, yd2 ¼

yd3 ¼ 100 and yd1 ¼ 278:9616508149336. The value for d1 has been chosen so as to cause a pair of identical
real roots. The rate of change of the system parameters are _ym1 ¼ 3; _ym2 ¼ 1; _ym3 ¼ 5, _yk1 ¼ 1600; _yk2 ¼

1400; _yk3 ¼ 2000 and _yd1 ¼ 6; _yd2 ¼ 7; _yd3 ¼ 2.
The eigenvalues of the system comprise one pair of complex conjugate, one pair of identical real roots, one

other finite real root and one infinite eigenvalue. The inverses of the system eigenvalues are

l�1 ¼

�0:004179171� 0:021767786i

�0:004298863� 0:00000i

�0:007342651

�0:000000000

2
6664

3
7775

The diagonalised system and its derivatives are calculated from Eq. (69).
Table 4 summarises the values of fmi; di; kig for each of the three pairs of modes as well as f _mi; _di; _kig.
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�d1

�d2

�d3

�m1

�k1

�k2

�k3

�m2

Fig. 2. Physical system; mass, stiffness and damping.

Table 4

Diagonalised system and its rates of change.

Mode pair 1 Mode pair 2 Mode pair 3

mi 4.9128E�4 1.8481E�5 0

di 8.3581E�3 8.5976E�3 7.3425E�3

ki 9.9996E�1 9.9993E�1 9.9997E�1

_mi 0.1134E�2 0.1278E�3 0.1836E�3
_di �0.6694E�2 0.1207E�1 �0.1407E�1

_ki 0.5539E�6 �0.1038E�3 0.1033E�3
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7. Conclusions

Previous papers have presented computation methods for the derivatives of eigenvalues and eigenvectors for
general non-symmetric and damped vibrating systems. Separate papers have also defined structure-preserving
equivalences and shown that almost all second-order systems can be transformed to diagonal form using real-
valued coordinate transformations. The triples of diagonal entries of the diagonalised system contain the
eigenvalues. Pairs of columns of the left and right transformation matrices contain the left and right
eigenvector information. The present paper has shown how the existing methods for eigenvalue and eigenvalue
derivatives for undamped systems can be extended to the concept of structure-preserving equivalences to yield
general methods for calculating the derivatives of both the diagonalised system and the diagonalising
transformations.

The new construction for these derivatives has several advantages over the conventional approaches to
eigenvalue and eigenvector derivatives. Firstly, cases where the existence of a pair of identical real roots causes
the derivatives of two eigenvalues and their corresponding eigenvectors to become undefined present no such
problem in this case. Secondly, cases of infinite eigenvalues (corresponding to some zero singular values in the
mass matrix) produce no difficulty whatsoever. Thirdly, some other cases where the Jordan form for the
system is non-diagonal can have well defined derivatives for their diagonalised systems and diagonalising
transformations.
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The method proposed has practical applications-beyond simply resolving the quandary that eigenvalue
derivatives become undefined in the presence of a pair of identical real roots and the difficulty with expressing
derivatives of infinite eigenvalues. The additional advantages are associated with the transformation of
measured data into ‘‘modal form’’. A pair of complex modes, as it is normally understood, actually represents
a real two-dimensional subspace within state-space. The diagonalising transformations discussed in this paper
are direct representations of these two-dimensional subspaces and they can be extracted directly from physical
measurements of displacements and velocities. By contrast, extraction of pairs of complex modes from sets of
physical measurements inherently requires use of the corresponding complex eigenvalues.

As a by-product of the development of these new formulae for the derivatives, new homogeneous coordinates

expressions for pairs of roots of a quadratic eigenvalue problem have been presented (Eqs. (47) and (48)).
These expressions potentially have substantial value in their own right and they form obvious prototypes for
related expressions for groups of l eigenvalues of general matrix polynomials of order l.
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